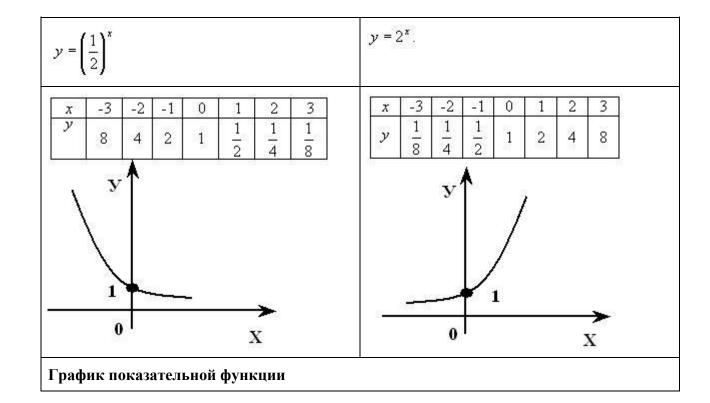
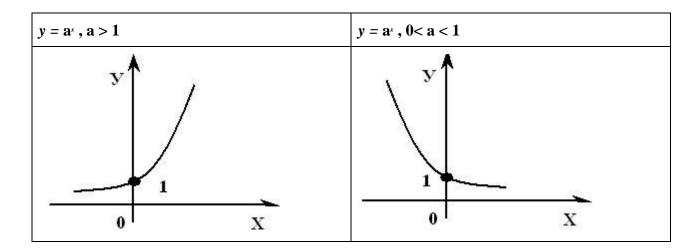
Тема урока: Показательная функция, основные свойства, график Цели:

- ввести определение показательной функции;
- сформулировать её основные свойства;
- показать построение графиков функции y = a^x(a > 0, a ≠ 1).


Определение. $\underline{\phi_{YHKQU9}}$ вида $y=a^x$, a>0, $a\ne 1$, $x\in R$ называется <u>показательной</u> функцией.


Замечание. Исключение из числа значений основания *а* чисел 0; 1 и отрицательных значений *а* объясняется следующими обстоятельствами:

a = 0	Выражения вида 0° определено при $x > 0$ и в этом случае тождественно равно нулю.
a = 1	Выражение 1^x определено при всех x , имеет постоянное значение (тождественно единице).
a < 0	Возможно возведение в целую степень или в рациональную степень с нечётным знаменателем.

Само аналитическое выражение a^x в указанных случаях сохраняет смысл и может встречаться в решении задач. Например, для выражения x^y точка x = 1; y = 1 входит в область допустимых значений.

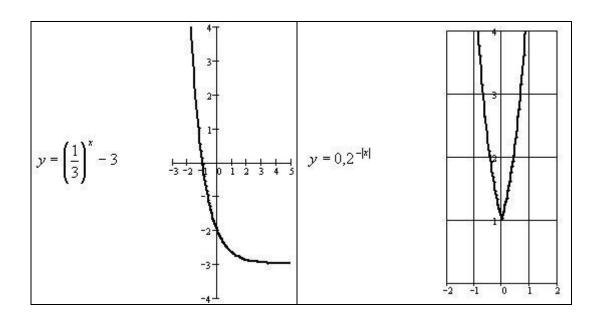
 $y = \left(\frac{1}{2}\right)^x$ Построить графики функций: $y = \left(\frac{1}{2}\right)^x$ и $y = 2^x$.

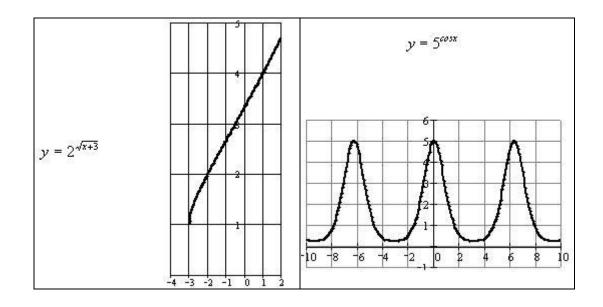
Свойства показательной функции

Свойства показательной функции	$y = \mathbf{a}^x$, $\mathbf{a} > 1$	$y = a^x$, $0 < a < 1$
1. Область определения функции	(- ω; ω)	
2. Область значений функции	(0, 2)	
3.Промежутки сравнения с	при $x > 0$, $a^x > 1$	при $x > 0$, $0 < a^x < 1$
единицей	при $x < 0$, $0 < a^x < 1$	при $x < 0$, $a^x > 1$
4. Чётность, нечётность.	Функция не является ни чётной, ни нечётной (функция общего вида).	
5.Монотонность.	монотонно возрастает на R	монотонно убывает на R
6. Экстремумы.	Экстремумы. Показательная функция экстремумов не имеет.	
7. Асимптота Ось O_x является горизонтальной асимптотой.		тьной асимптотой.

$$x = a^{x-y}$$
 $x = a^{x-y}$
 $x = a^{x-y}$
 $x = a^{x-y}$
 $x = a^{x-y}$
 $x = a^{x}b^{x}$
 x

Когда заполняется таблица, то параллельно с заполнением решаются задания.


Задание № 1. (Для нахождения области определения функции).


Какие значения аргумента являются допустимыми для функций:

$y = a^{-x}$	R
$y = a^{\sqrt{\kappa}}$	[0;∞)
$y = a^{\frac{6}{\kappa}}$	(-∞;0)∪(0;∞)
$y = a^{\frac{8}{\sqrt{5\kappa-4}}}$	$\left(\frac{4}{5},\infty\right)$

Задание № 2. (Для нахождения области значений функции).

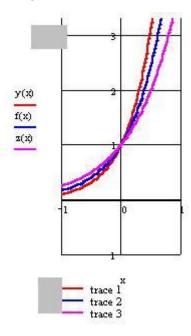
На рисунке изображен график функции. Укажите область определения и область значений функции:

<u>Задание № 3</u>. (Для указания промежутков сравнения с единицей). Каждую из следующих степеней сравните с единицей:

$\left(\frac{3}{4}\right)^{\frac{2}{3}}$	<1	$0 < \frac{3}{4} < 1 \text{ m } \frac{2}{3} > 0$
$\left(\frac{4}{3}\right)^{\frac{1}{6}}$	>1	$\frac{4}{3} > 1$ и $\frac{1}{6} > 0$
$\left(\frac{3}{5}\right)^{-\frac{2}{7}}$	≥1	$0 < \frac{3}{5} < 1$ и $-\frac{2}{7} < 0$
$\left(\frac{5}{2}\right)^{-\frac{2}{9}}$	<1	$\frac{5}{2} < 1 \text{ H} - \frac{2}{9} < 0$

Задание № 4. (Для исследования функции на монотонность). Сравнить по величине действительные числа m и n если:

$(2,3)^{m} > (2,3)^{n}$	$m \ge n$	2,3>1
$(0,7)^{M} > (0,7)^{M}$	$m \le n$	0<0,7<1
$\left(\frac{2}{3}\right)^m < \left(\frac{2}{3}\right)^n$	m > n	$0 < \frac{2}{3} < 1$
$\left(1\frac{1}{6}\right)^m < \left(1\frac{1}{6}\right)^n$	$m \le n$	$1\frac{1}{6} > 1$

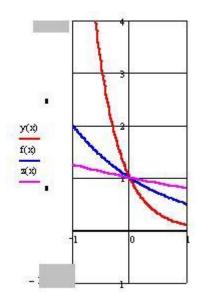

<u>Задание № 5</u>. (Для исследования функции на монотонность). Сделайте заключение относительно основания *a*, если:

$a^{-1,5} > a^{2,5}$	0 < a < 1	-1,5 < 2,5
$a^{2,3} > a^{1,2}$	a > 1	2,3 > 1,2
$a^{\frac{2}{3}} > a^{\frac{3}{4}}$	0 < a < 1	$\frac{2}{3} < \frac{3}{4}$
$a^{\frac{1}{2}} \le a^{\frac{2}{3}}$	a > 1	$\frac{1}{2} < \frac{2}{3}$

В одной координатной плоскости построены графики функций:

$$y(x) = 10^x$$
; $f(x) = 6^x$; $z(x) - 4^x$

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?


Вывод:

при х < 0	чем <u>больше</u> значение основания степени, тем <u>ближе</u> к оси O_x располагается график показательной функции;
при х = 0	графики показательных функций <u>пересекаются</u> в одной точке $(0;1)$;
при х > 0	чем <u>больше</u> значение основания степени, тем <u>дальше</u> от оси O_x располагается график показательной функции.

В одной координатной плоскости построены графики функций:

$$y(x) = (0,1)^x$$
; $f(x) = (0,5)^x$; $z(x) = (0,8)^x$.

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

Вывод:

при х < 0	чем <u>меньше</u> значение основания степени, тем <u>дальше</u> от оси O_x располагается график показательной функции;
при х = 0	графики показательных функций <u>пересекаются</u> в одной точке $(0;1)$;
при х > 0	чем <u>меньше</u> значение основания степени, тем <u>ближе</u> к оси O_x располагается график показательной функции.

Домашнее задание:

Записать конспект урока.

_Исследовать функцию и построить график:

- a) $y=2^x + 1$ b) $y=3^x 2$