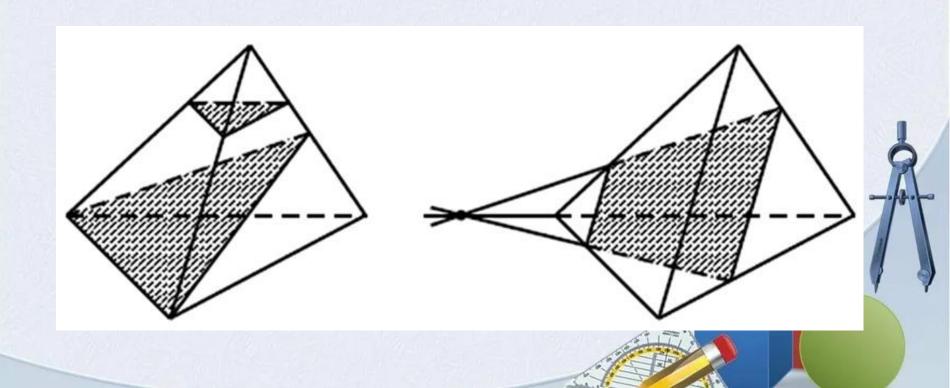
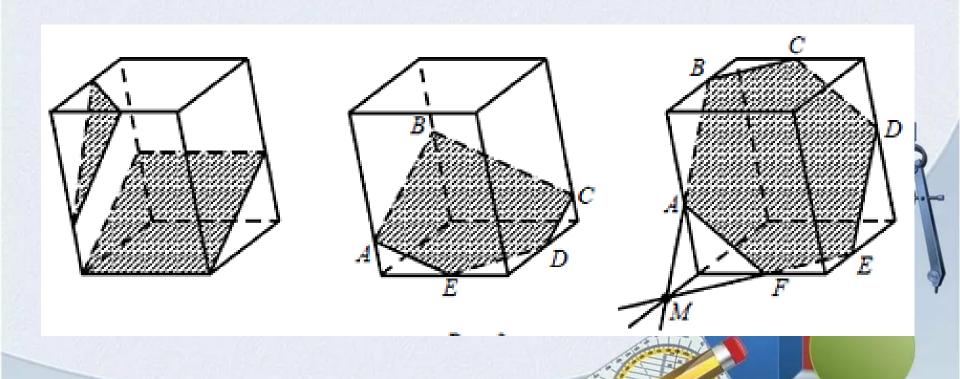
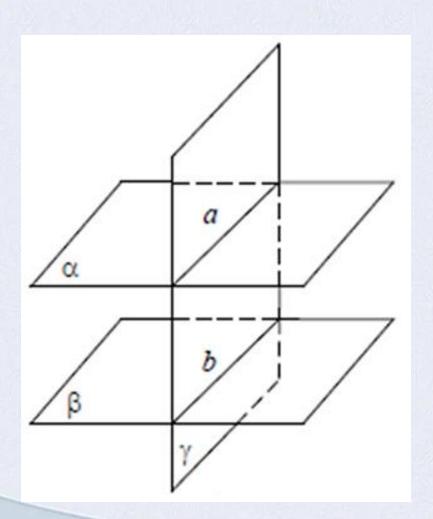
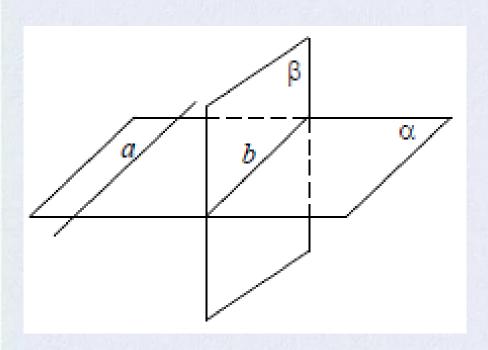
Сечения куба, призмы, пирамиды


Сечение многогранников

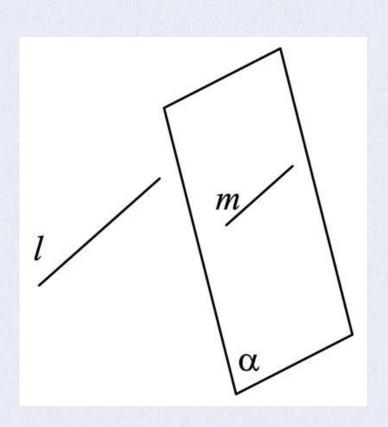
- ✓ **Опр.** <u>Секущая плоскость</u> многогранника любая плоскость, по обе стороны от которой имеются точки данного многогранника.
- ✓ Секущая плоскость пересекает грани многогранника по отрезкам.
- ✓ **Сечение многогранника** многоугольник, лежащий в секущей плоскости и ограниченный линией пересечения.

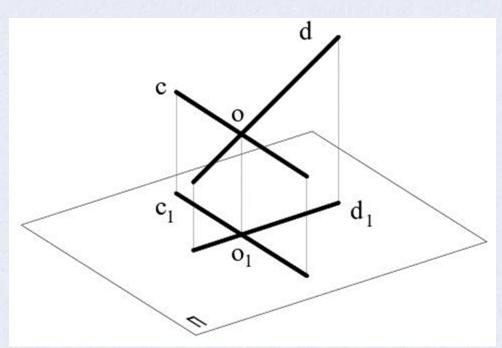

Сечение тетраэдра


- √Тетраэдр имеет четыре грани.
- ✓ Его **сечениями** могут быть только **треугольники** и **четырехугольники**.


Сечение параллелепипеда

- ✓ Параллелепипед имеет шесть граней.
- ✓ Его сечениями могут быть **треугольники, четырехугольники, пятиугольники** и **шестиугольники**.



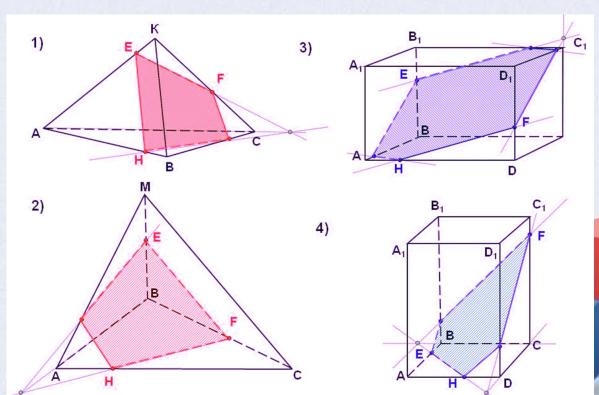

✓ Теорема 1. Если две параллельные плоскости пересечены третьей, то пересечения ЛИНИИ ИХ Поэтому параллельны. плоскость секущая пересекает плоскости параллельных граней ПО параллельным прямым.

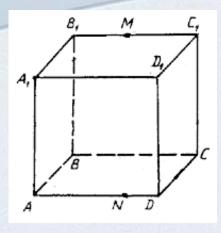
✓ **Теорема 2.** Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

✓ **Теорема 3.** Если прямая I параллельна какой либо прямой m, проведённой в плоскости α , то она параллельна и самой плоскости α .

✓ Теорема 4. Если прямая, лежащая в плоскости сечения, не параллельна плоскости некоторой грани, то она пересекается со своей проекцией на эту грань.

Алгоритм построения сечения

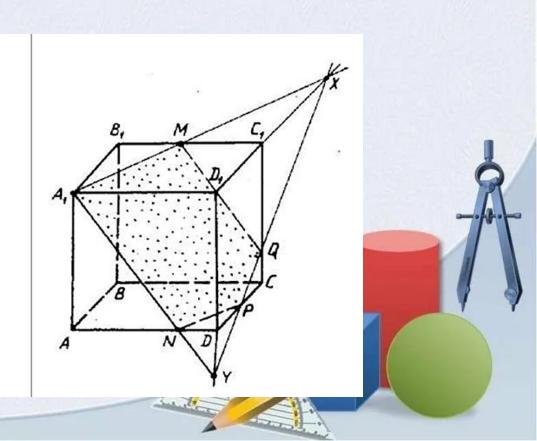

- 1. Если две точки секущей плоскости лежат в плоскости одной грани, то проводим через них прямую. Часть прямой, лежащая в плоскости грани сторона сечения.
- 2. Если прямая *а* является общей прямой секущей плоскости и плоскости какой-либо грани, то находим точки пересечения прямой *а* с прямыми, содержащими ребра этой грани. Полученные точки новые точки секущей плоскости, лежащие в плоскостях граней.
- 3. Если никакие две из данных точек не лежат в плоскости одной грани, то строим вспомогательное сечение, содержащее любые две данные точки, а затем выполняем шаги 1, 2.

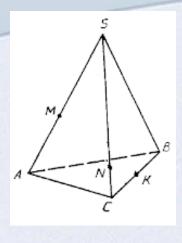

Контроль правильности построенного сечения

- ✓ Все вершины сечения лежат на ребрах многогранника.
- ✓ Все стороны сечения лежат в гранях многогранника.

✓ В каждой грани многогранника лежит не более одной стороны

сечения.

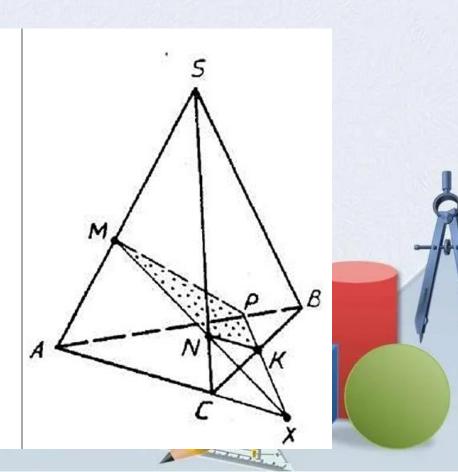


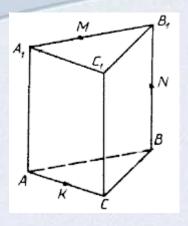

Пример 1

Построить сечение куба плоскостью, проходящей через точки: A_1 ; $M \in B_1C_1$; $N \in AD$.

Решение:

- 1) $A \leftrightarrow M$;
- 2) $A_1M \cap D_1C_1 = X$;
- 3) $A_1 \leftrightarrow N$;
- 4) $A_1N \cap DD_1 = Y$;
- 5) $X \leftrightarrow Y$;
- 6) $XY \cap CC_1 = Q$;
- 7) $XY \cap DC_1 = P$;
- 8) $M \leftrightarrow Q$;
- 9) $N \leftrightarrow P$;
- 10) $A_1 MQPN \rightarrow Искомое сечение$

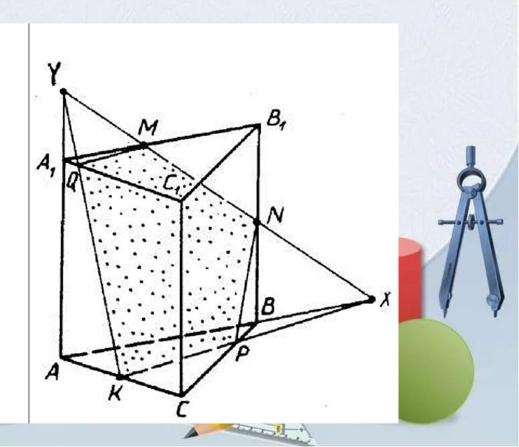



Пример 2

Построить сечение тетраэдра SABC плоскостью, проходящей через точки: $M \in SA; N \in SC; K \in BC$

Решение:

- 1) $M \leftrightarrow N$;
- 2) $MN \cap AC = X$;
- 3) $X \leftrightarrow K$;
- 4) $XK \cap AB = P$;
- 5) $P \leftrightarrow M$;
- 6) $MNKP \rightarrow$ искомое сечение



Пример 3

Построить сечение треугольной призмы ABCA1B1C1 плоскостью, проходящей через точки: $M \in A1B1$; $N \in BB1$ и $K \in AC$.

Решение:

- 1) $M \leftrightarrow N$;
- 2) $MN \cap AB = X$;
- 3) $X \leftrightarrow K$;
- 4) $XK \cap BC = P$;
- 5) $MN \cap AA_1 = Y$;
- 6) $Y \leftrightarrow K$;
- 7) $YK \cap A_1C_1 = Q$;
- 8) $YK \cap A_1C_1 = Q$;
- 9) $Q \leftrightarrow M$;
- 10) $MNPKQ \rightarrow ucкомое сечение;$

Задание:

- 1. Выписать теоремы, используемые для построения сечений
- 2. Записать алгоритм построения сечений
- 3. Перенести в тетрадь пример 1

